Unit	Lesson	Lesson Objectives

Geometric Structure and Patterns

Euclidean and Non-Euclidean Geometries

Compare and contrast the concepts of postulates and theorems
Compare and contrast the development and structure of Euclidean and non-Euclidean geometries
Identify and describe basic postulates about points, lines, and planes
Identify and describe representations of the undefined terms point, line, and plane
Identify and describe the relationships between points, lines, and planes in space

Measuring Length

Apply the ruler postulate and segment addition postulate to find the lengths of line segments
Distinguish between lines, rays, and segments

Measuring Angles

Apply the protractor postulate and angle addition postulate to find angle measures
Name angles and classify them according to their measures

Bisectors and Congruence

Calculate the measure of a line segment using the midpoint theorem
Calculate the measure of an angle given a bisector
Identify a midpoint or bisector of a line segment or angle

Interactive: Five Basic Constructions

Use a straightedge and compass to create constructions involving points and lines

Interactive: Proof Basics

Identify proof formats, the essential parts of a proof, and the assumptions that can be made from a given drawing
Use deductive reasoning to complete a formal proof

Transformational Geometry

Introduction to Transformations

Compare a preimage and image using the characteristics of isometric transformations
Describe and identify transformations of geometric figures
Translations
Use an algebraic rule to describe or perform a translation in the coordinate plane
Use mapping to describe or perform a translation in the coordinate plane

Reflections

Use an algebraic rule to describe or perform a reflection in the coordinate plane
Rotations
Use an algebraic rule to describe or perform a rotation in the coordinate plane

Unit Lesson Lesson Objectives

Dilations
Use an algebraic rule to describe or perform a dilation in the coordinate plane

Compositions

Use an algebraic rule to describe or perform a composition of transformations in the coordinate plane

Project: Frieze Patterns

Create a frieze pattern from a basic design element
Identify the seven classes of frieze patterns

Line and Angle Relationships

Special Angle Pairs

Calculate angle measures by using definitions and theorems about special angle pairs
Define and identify special angle pairs
Congruent Angle Pairs
Apply theorems about congruent angle pairs to calculate angle measures
Identify angle relationships by using theorems about congruent angle pairs
Parallel Lines and Angles
Apply theorems about angles formed by parallel lines cut by a transversal to calculate angle measures
Identify angle pairs formed by lines cut by a transversal

Interactive: Proving Angles Congruent

Prove angle relationships given parallel lines cut by a transversal

Proving Lines Paralle

Calculate angle measures in order to justify that lines are parallel
Identify theorems used to justify that lines are parallel
Prove lines are parallel using various proof formats

Interactive: Angle Constructions

Use a straightedge and compass to create constructions involving angles

Congruency in Triangles

Properties of Triangles
Apply triangle angle theorems to calculate angle measures
Classify triangles according to the measures of their sides and angles

Congruent Figures

Calculate angle measures and side lengths of congruent figures
Identify and apply the properties of congruent figures

Unit Lesson Lesson Objectives
Triangle Congruence: SAS Postulate and SSS Postulate
Calculate angle measures and side lengths of congruent triangles
Identify the SSS postulate and SAS postulate and apply them to examine triangle congruence
Prove triangles congruent using the SAS and SSS postulates

Triangle Congruence: ASA Postulate and AAS Theorem

Calculate angle measures and side lengths of congruent triangles
Identify the ASA postulate and AAS theorem and apply them to examine triangle congruence
Prove triangles congruent using the ASA postulate and AAS theorem

Congruence in Right Triangles

Calculate angle measures and side lengths of congruent right triangles
Determine if right triangles are congruent by using the HL theorem
Prove right triangles congruent using the HL theorem
Using Congruent Triangles: CPCTC
Analyze a drawing to determine the triangle congruence postulate or theorem that supports CPCTC
Interactive: Proving Congruency Using CPCTC
Prove segments, angles, or triangles congruent using CPCTC

Triangle Relationships and Similarity

Bisectors in a Triangle

Apply properties of bisectors of a triangle to solve problems
Identify the properties of the circumcenter and incenter of a triangle
Medians and Altitudes of a Triangle
Apply properties of medians and altitudes of a triangle to solve problems
Identify the properties of the orthocenter and centroid of a triangle
Midsegments of a Triangle
Apply the triangle midsegment theorem to solve problems
Identify the triangle midsegment theorem and use it to justify relationships

Isosceles Triangles

Apply theorems related to isosceles triangles to solve problems
Identify theorems related to isosceles triangles and use them to justify side and angle relationships

Interactive: Triangle Constructions

Use a straightedge and compass to create constructions involving triangles

Similar Polygons

Identify and apply properties of similar polygons
Use proportions to solve problems involving similar polygons

Unit Lesson Lesson Objectives
Similar Triangles
Calculate angle measures and side lengths of similar triangles
Identify and apply the AA similarity postulate and the SSS and SAS similarity theorems

Interactive: Proving Triangles Similar

Complete proofs involving similar triangles

Special Segments and Proportions

Solve problems using theorems about special segments and triangles

Perimeter and Area of Similar Figures

Identify the relationships between the side lengths, perimeters, and areas of similar figures
Use the relationships between similar figures to calculate perimeters and areas

Trigonometry

Right Triangle Similarity
Apply theorems to solve problems involving geometric means
Identify similar right triangles formed by an altitude and write a similarity statement

Pythagorean Theorem

Apply the Pythagorean theorem to find side lengths of a right triangle
Solve problems using the Pythagorean theorem in modeling situations

Special Right Triangles

Solve problems involving special right triangles in modeling situations
Use properties of $45^{\circ}-45^{\circ}-90^{\circ}$ and $30^{\circ}-60^{\circ}-90^{\circ}$ triangles to find side lengths

Trigonometric Ratios

Apply trigonometric relationships to complementary angles to write equivalent expressions
Determine the exact values of sine, cosine, and tangent for $30^{\circ}, 45^{\circ}$, and 60°
Identify and apply the trigonometric ratios of sine, cosine, and tangent

Solving Right Triangles

Solve problems involving right triangles in modeling situations
Use trigonometric ratios to find missing parts of a right triangle

Angles of Elevation and Depression

Identify angles of elevation and depression in problem situations
Solve problems involving angles of elevation and depression

Law of Sines

Given the ambiguous case, use the law of sines to solve problems
Identify the law of sines and apply it to find parts of a triangle

Unit	Lesson	Lesson Objectives

Law of Cosines
Identify the law of cosines and apply it to find parts of a triangle
Solve problems involving the law of cosines in modeling situations

Trigonometric Area Formulas

Apply Heron's formula to find the area of a triangle
Calculate the area of a triangle using trigonometry

Quadrilaterals

Classifying Quadrilaterals
Apply properties of various quadrilaterals to calculate angle measures and side lengths
Apply the quadrilateral angle sum theorem to calculate angle measures
Classify and describe relationships within the family of quadrilaterals
Properties of Parallelograms
Apply theorems about parallelograms to calculate angle and segment measures
Complete proofs involving properties of parallelograms
Identify theorems about the properties of parallelograms

Proving a Quadrilateral Is a Parallelogram

Identify and apply theorems that determine if a quadrilateral is a parallelogram
Prove a quadrilateral is a parallelogram

Special Parallelograms

Apply theorems about special parallelograms to calculate angle and segment measures
Complete proofs involving the diagonals of special parallelograms
Identify theorems about the diagonals of rectangles, rhombi, and squares
Interactive: Proving Special Parallelograms
Complete proofs involving rectangles, rhombi, and squares

Trapezoids and Kites

Apply theorems about trapezoids and kites to solve problems
Complete proofs involving properties of trapezoids and kites
Identify theorems about the properties of trapezoids and kites

Unit	Lesson	Lesson Objectives

Polygons

Properties of Polygons
Identify and apply theorems involving the angles and sides of a polygon
Use properties to identify and classify polygons

Symmetry

Calculate angles of rotation of geometric figures
Identify types of symmetry in geometric figures
Project: Tessellations
Create a tessellation using polygons
Identify and classify types of tessellations

Area and Perimeter of Geometric Figures

Calculate the perimeters and areas of geometric figures
Solve problems involving area and perimeter in modeling situations

Area of Regular Polygons

Calculate the area of a regular polygon
Identify and determine the measures of the parts used to find the areas of regular polygons
Solve problems involving areas of regular polygons in modeling situations

Construct Regular Polygons

Construct regular polygons inscribed in a circle.
Prove that all circles are similar.

Circles

Introduction to Circles

Calculate the circumference and area of a circle
Identify terms related to circles
Solve problems related to circles in modeling situations

Tangents to a Circle

Complete proofs involving the relationships between tangents and circles
Identify and apply theorems about tangents and radii
Identify common tangents between circles

Arcs, Chords, and Central Angles

Complete proofs involving the relationships between arcs and chords of a circle
Identify relationships between arcs and central angles and apply them to solve problems
Identify theorems about arcs and chords and apply them to solve problems

Unit	Lesson	Lesson Objectives

Inscribed Angles
Calculate the measures of angles and their intercepted arcs
Complete proofs involving the relationships of angles and arcs of a circle
Identify relationships between inscribed angles and arcs

Secants, Tangents, and Angles

Identify relationships between arcs and angles formed by secants, tangents, and chords
Solve problems involving angles and arcs formed by secants, tangents, and chords

Special Segments

Calculate the lengths of segments formed by chords, secants, and tangents
Identify relationships between segments formed by chords, secants, and tangents

Arc Length and Area of a Sector

Calculate arc lengths
Calculate the areas of sectors and segments of circles
Relate the degree and radian measures of an angle

Interactive: Circle Constructions

Use a straightedge and compass to create constructions involving circles

Surface Area and Volume

Solids
Identify and classify solids
Identify Euler's formula and apply it to the Platonic solids

Sketching Solids

Connect two-dimensional nets to three-dimensional figures
Identify the orthographic and isometric views of a three-dimensional figure

Surface Area of Solid Figures

Calculate the surface area of composite solids
Calculate the surface area of prisms, cylinders, pyramids, and cones
Describe the effect on surface area when the dimensions of a solid figure are changed

Volume

Calculate the volume of prisms, cylinders, pyramids, and cones
Describe the effect on volume when the dimensions of a solid figure are changed
Solve problems involving the volume of prisms, cylinders, pyramids, and cones

Surface Area and Volume of Spheres

Calculate the surface area and volume of a sphere
Solve problems involving the surface area and volume of a sphere

Unit Lesson Lesson Objectives

Cross Sections of Solid Figures

Apply Cavalieri's principle to calculate the volume of solid figures
Identify cross sections of solid figures

Similar Solids

Calculate the surface areas and volumes of similar solids
dentify the relationships between the surface areas and volumes of similar solids

Analytic Geometry

Distance and Midpoint
Use the distance formula to solve problems involving geometric shapes
Use the midpoint formula to solve problems involving geometric shapes
Slope
Solve problems involving the slope of a line in the coordinate plane
Use coordinate geometry to determine if sides of a geometric figure with given vertices are parallel or perpendicular

Equations of Lines

Relate the geometric and algebraic representations of lines in the coordinate plane
Parallel Lines
Determine if lines are parallel from their given equations
Write the equation of a line given the equation of another line to which it is parallel and a point on that line

Perpendicular Lines

Determine if lines are perpendicular from their given equations
Write the equation of a line given the equation of another line to which it is perpendicular and a point on that line

Geometric Figures in the Coordinate Plane

Complete proofs involving geometric figures in the coordinate plane
Use coordinate geometry to verify the properties of a geometric figure

Conic Sections: Circles

Given specific information about a circle, determine its equation in standard form
Given the equation of a circle in standard form, identify the center, the radius, and the graph

Conic Sections: Parabolas

Relate the algebraic and geometric representations of parabolas

\section*{| Unit | Lesson | Lesson Objectives |
| :--- | :--- | :--- |}

Set Theory and Probability

Set Theory

Find subsets, complements, and cross products of sets
Identify and describe the relationships and the notation used in set theory

Venn Diagrams and Sets

Use symbolic notation to describe events displayed in Venn diagrams involving unions, intersections, and complements
Use Venn diagrams to explore set relationships
Use Venn diagrams to solve problems involving sets

Random Behavior

Apply lists, diagrams, and the fundamental counting principle to determine the number of outcomes possible in a given situation
Identify experimental and theoretical probabilities and apply the law of large numbers to determine probabilities

Mutually Exclusive and Independent Events

Calculate probabilities using the addition rule of mutually exclusive events
Calculate probabilities using the multiplication rule of independent events
Identify and describe mutually exclusive and independent events

Conditional Probability

Use calculations to determine if two events are independent
Use formulas and Venn diagrams to calculate conditional probabilities
Use general probability rules to calculate probabilities of compound events

Probability and Two-Way Tables

Calculate conditional probabilities from data displayed in a two-way table
Use a two-way table to determine if two events are independent

Probability with Combinations and Permutations

Quantify outcomes using combinations and permutations
Use combinations and permutations to compute probabilities of compound events

Expected Value

Calculate expected values.
Use expected values to make decisions.

Binomial Distribution

Calculate binomial probabilities.
Identify a binomial experiment.
Identify the probability of success, probability of failure, and number of trials for a binomial experiment.

